Using Enhanced Muon Tomography to Assess Core Relocation Following a Severe Reactor Accident

Joseph John Bevelacqua

Abstract


Muon tomography can reveal the location and configuration of a displaced core following a severe power reactor accident.  The image contrast of this technique is enhanced using energies beyond those encountered in the cosmic ray muon spectrum.  Optimum contrast is energy dependent and varies with the thickness of relocated core materials.


Keywords


Muon Tomography; Variable Energy Muon Beam; Power Reactor Accident Assessment; Image Contrast Optimization

References


George EP. Cosmic Rays Measure Overburden of Tunnel. Commonwealth Engineer, 1 July, 455-457 (1955).

Alvarez LW, Anderson JA, Elbedwe F, Burkhard J, Fakhry A, Girgis A, Goneid A, Hassan F, Iverson D, Lynch G, Miligy Z, Moussa AH, Mohammed S, Yazolino L. Search for Hidden Chambers in the Pyramids, Science, 167, 832–839 (1970).

Nagamine K, Iwasaki M, Shimomura K, and Ishida K. Method of probing inner structure of geophysical substance with the horizontal cosmic ray muons and possible application to volcanic eruption prediction. Nucl. Instrum. Meth. A356, 585–595 (1995).

Borozdin KN, Hogan GE, Morris C, Priedhorsky WC, Saunders A, Schultz LJ, Teasdale ME. Radiographic imaging with cosmic-ray muons. Nature (London) 422, 277 (2003).

Morris CL, Alexander CC, Bacon JD, Borozdin KN, Clark DJ, Chartrand R, Espinoza CJ, Fraser AM, Galassi MC, Green JA, Gonzales JS, Gomez JJ, Hengartner NW, Hogan GE, Klimenko AV, Makela MF, McGaughey P, Medina JJ, Pazuchanics FE, Priedhorsky WC, Ramsey JC, Saunders A, Schirato RC, Schultz LJ, Sossong MJ, Blanpied GS, Tomographic Imaging with Cosmic Ray Muons. Science and Global Security 16, 37-53 (2008).

Schultz LJ, Borozdin KN, Gomez JJ, Hogan GE, McGill JA, Morris CL, Priedhorsky WC, Saunders A, Teasdale ME. Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nucl. Instrum. Methods A519, 687-694 (2004).

Borozdin K, Greene S, Lukic´ Z, Milner E, Miyadera H, Morris C, Perry J. Cosmic Ray Radiography of the Damaged Cores of the Fukushima Reactors. Phys. Rev. Lett.109, 152501-1 - 152501-3 (2012).

Bogdanov AG, Burkhardt H, Ivanchenko VN, Kelner SR, Kokoulin RP, Maire M, Rybin AM, L. Urban L. Geant4 Simulation of High Energy Muon Interactions, Published in:Nuclear Science Symposium Conference Record. IEEE (Volume:4 ), 2043-2047 (2004), cern.ch/hbu/IEEE-TNS-01462665.pdf

Beatty J, Westerhoff S. The Highest-Energy Cosmic Rays. Annu. Rev. Nucl. Sci and Particle Physics 59, 319-345 (2009).

Groom DE, Mokhov NV, Striganov SI. Muon Stopping Power and Range Tables 10 MeV to 100 TeV. Atomic Data and Nuclear Data Tables 78 (2), 183-356 (2001).

GPU Nuclear letter, 4410-90-L-0012. Defueling Completion report, Final Submittal. General Public Utilities Nuclear Corporation, Middletown, PA (1990).

IAEA-TECHDOC-1120. Assessment and management of ageing major nuclear power plant components important to safety: PWR pressure vessels. Vienna: International Atomic Energy Agency (1999).

Travish G, Yoder RB. Laser-powered dielectric-structures for the production of high-brightness electron and x-ray beams, in: K.W.D. Ledingham et al. (Eds.), Laser Acceleration of Electrons, Protons, and Ions; and Medical Applications of Laser-Generated Secondary Sources of Radiation and Particles, Prague, Czech Republic (SPIE, Bellingham, WA), Proceedings of SPIE, 8079, 80790K – 80790L (2011).

Bevelacqua JJ. Standard Model of Particle Physics-A Health Physics Perspective. Health Physics 99(5), 613– 623 (2010).

Johns EJ, Cunningham JR. The Physics of Radiology, 4th ed. Springfield, IL: Charles C Thomas (1983).

Bethe H. Zur Theorie des Durchgangs schneller Korpuskularstrahlung durch Materie. Ann. Phys. (Leipzig) 5, 325 - 400 (1930).

Bevelacqua JJ. Basic Health Physics: Problems and Solutions, 2nd ed. Weinheim: Wiley-VCH (2010).

Turner JE. Atoms, Radiation, and Radiation Protection, 3rd ed. Weinheim: Wiley-VCH (2007).

Marmier P, Sheldon E. Physics of Nuclei and Particles, Volume I. New York: Academic Press (1969).

Radiation Safety Information Computational Center Computer Code Collection: Code Package CCC-228 SPAR. Calculation of Stopping Powers and Ranges for Muons, Charged Pions, Protons, and Heavy Ions. Oak Ridge National Laboratory, Oak Ridge, TN (1985) , http://rsicc.ornl.gov.

Armstrong TW, Chandler KC. SPAR. a FORTRAN Program for Computing Stopping Powers and Ranges for Muons, Charged Pions, Protons, and Heavy Ions ORNL-4869. Oak Ridge National Laboratory, Oak Ridge, TN (1973).

Armstrong TW, Chandler KC. SPAR Stopping Powers and Ranges for Muons, Charged Pions, Protons, and Heavy Ions. Nucl. Instrum. Methods 113, 313-314 (1973).

Jenkins JA, White HE. Fundamentals of Optics, 3rd ed. New York: McGraw-Hill (1957).


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

"No endorsement" policy: Unless explicitly stated otherwise, the opinions, analyses, discussions, views and recommendations outlined in the articles published in the International Nuclear Safety Journal (INSJ) are solely those of their respective authors and not of the editors, owners or publishers of the INSJ.